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CONVECTIVE HEAT-TRANSFER COEFFICIENTS FROM A SOLUTION OF
THE CONDUCTION EQUATION FOR A WALL SEPARATING TWO
FLUIDS, ONE HAVING AN OSCILLATING TEMPERATURE
by Ronald G. Huff

Lewis Research Center

SUMMARY

The temperature response of a wall which separates two fluids, one having a sinus-
oidally oscillating temperature has been analytically determined. Two mathematical
solutions are presented: one uses thermal properties distributed through the wall; the
other assumes that the wall thermal properties can be lumped,

The solutions show that the convective heat-transfer coefficients on both sides of the
wall can be determined experimentally if a single wall, the hot fluid, and coolant tempera-
tures are known as a function of time. From traces of these temperatures the frequency
of oscillation and either amplitude ratio or the phase lag angle between the forced fluid
and wall temperatures are measured. These values are used in the solutions for the
coefficients. The method is particularly applicable to rocket engines and is generally
applicable to heat exchangers.

Charts are included to allow graphical solutions for the distributed-wall-property
case. Comparisons of the two mathematical solutions are made which indicate that it
may be possible to use the simpler lumped-wall-property solution. This requires, among
other things, thin walls and low forcing frequencies. The lumped-wall-property solution
may be applied with greater accuracy when the wall temperature is measured at the mid-
point of the wall,

INTRODUCTION

Transient and steady-state analyses have been used to design calorimeters for de-
termining convective heat transfer in heat exchangers, rocket engines, and aerodynamic
heat-transfer studies. The steady-state calorimeter of reference 1 makes use of the
temperature gradient in a material of known conductivity and geometry; the transient



type (ref. 2) uses the temperature response of a material to a change in driving tem-
perature,

The temperature response of a wall having one side insulated and the other exposed
to a fluid with a sinusoidally varying temperature has been investigated by Anderson
(ref. 3) and this author (ref. 4). Equations for the convective heat-transfer coefficients
were derived in terms of the wall material properties, frequency, and phase lag angle
between the, force fluid temperature and the responding wall temperature. The applica-
tion of these equations is limited to walls having either one side insulated or having fluid
temperatures and convective heat-transfer coefficients that are equal on both sides of the
wall,

Of more general interest is the problem of determining the heat-transfer coefficients
in a heat exchanger or cooled rocket engine. This problem can also be solved, by sinus-
oidally varying the temperature of the hot fluid or the coolant and measuring the tempera-
ture response of the wall, The combustion temperature in a rocket engine, for example,
can be oscillated by changing the ratio of the oxidizer-to-fuel mass flow rates while
maintaining the total propellant mass-flow rate constant. This will require separate
coolant and propellant systems so that the mass flow rates that affect the heat-transfer
coefficients can be held constant, This uncoupled system is completely reasonable from
a research point of view.

The purpose of this analytical study was to derive the equations for the convective
heat-transfer coefficients in terms of the sinusoidally varying temperature response of
a wall which separates two fluids, one having a sinusoidally oscillating temperature.

This study was performed at NASA Lewis in conjunction with a rocket nozzle heat-transfer

program,

STATEMENT OF THE PROBLEM

Figure 1(a) shows a wall that separates two moving fluids. The hot-gas-side fluid
temperature TG is greater than the coolant temperature T, causing heat to flow
through the wall in the positive x direction. The problem is to determine the convective
heat-transfer coefficients if either the hot-gas or coolant temperature is varied sinus-
oidally and if the temperature response of the wall is measured at only one point, Fig-
ure 1(b) shows what the wall temperature might look like at any given instant in time.

METHOD OF ATTACK

If the hot-gas temperature is made to vary sinusoidally, the wall temperature will
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Figure 1. - Basic heat-transfer model.
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(b) Transient temperature response of plate to sinusoidally forced fluid temperature.

Figure 1. - Continued.

respond sinusoidally but will lag the driven temperature by an angle ¢. In addition, the
amplitude of the wall temperature oscillation will be less than that of the driven tempera-
ture. Both the phase lag ¢ and the ratio of the amplitude of the wall temperature to

the amplitude of the driven temperature 6/AT are, among other things, functions of the
convective heat-transfer coefficients h. Finding the relation between the convective heat-
transfer coefficients and the phase lag ¢, or the amplitude ratio Gm/AT, is required in
order to solve for the coefficients,

To find this relation, the temperature response of the wall to a sinusoidally driven
fluid temperature is derived. From this solution and steady-state heat-transfer conditions
(which relate the ratio of the convective heat-transfer coefficients to the ratio of the
temperature drops between fluids and wall), the absolute values of the coefficients can be
determined as functions of either phase lag or amplitude ratio. The quantities that
must be known as a function of time are the hot-gas temperature TG’ the wall tempera-
ture at any point x (T(x, 7)) and the coolant temperature T_,. From these quantities
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either the phase lag or the amplitude ratio can be determined as well as the ratio of the
convective heat-transfer coefficients. With the ratio of the coefficients, the frequency of
the temperature oscillation, the wall material properties, and either ¢ or Gm/ ATG,
the convective heat-transfer coefficients hG and h c ¢an be calculated.

It is also possible to calculate the coefficients by oscillating the coolant temperature
sinusoidally, This approach requires the measurement of the same quantities as when
the hot fluid temperature is oscillated.

FORMULATIONS AND SOLUTIONS OF THE PROBLEM

Two analytical solutions have been found, each of which relate the heat-transfer
coefficients to either the phase lag or the amplitude ratio. The first solution (case 1) uses
the second-order partial differential equation for transient, one-dimensional, heat con-
duction in a plate. The boundary conditions are that one surface is heated convectively
and the other surface is cooled convectively. The second solution (case 2) uses a lumped
wall property approach, The differential equation used in case 2 is obtained by equating
the heat stored in the wall as a function of time to the difference between the heat trans-
ferred to one side of the plate convectively and the heat taken from the other side of plate
convectively. The case 2 solution for the wall temperature can be broken into three
parts: the starting transient, an offset of the average value from the value before the
start of the oscillation, and the steady-state oscillation. The steady-state oscillating part
of the case 2 solution is used extensively in this work.

Solutions for both case 1 and case 2 are given in this report so that the reader can
determine for himself when the simpler, though less accurate, case 2 solution is applica-
ble.

Distribution Wall Properties (case 1)

The following assumptions have been used to obtain the case 1 solution:

(1) The heat flows through the plate in the X direction only (one-dimensional heat
conduction),

(2) The wall or plate properties (density, specific heat, and thermal conductivity)
are constant,

(3) The convective heat-transfer coefficients on both sides of the wall are constant,

(4) The coolant temperature is constant,

Determining the validity of assumption (1) is left to the experimenter with his parti-
cular application since no general comments are possible as to when one-dimensional



heat flow is present. The second assumption, that of constant wall properties, will de-
pend on the wall material and the temperature through the wall including the amplitude of
the oscillations. The wall temperature amplitude can be minimized so that the assumption
of constant wall properties as a function of time should be applicable. If the wall is thin
enough or the heat flux low enough, the wall properties may not change appreciably from
one surface to the other. The third assumption, constant coefficients, appears justified
because the coefficients are usually not strong functions of pressure or temperature.
They are, however, strong functions of the mass velocity and for that reason the mass
flow rate of the fluids are held constant. In the experimental rocket engine this is ac-
complished by uncoupling the coolant flow rate from the propellant flow rate by use of
separate systems. This allows a constant coolant flow rate to be set. The total mass
flow rate of the propellants (oxidizer plus fuel) is held constant but in order to vary the
combustion temperature the ratio of the individual propellant mass flow rate is varied.
The validity of assumption (4) can be insured by limiting the amplitude of the hot fluid
temperature oscillation to a value that forces the amplitude of the wall temperature os-
cillation to be just adequately measureable. This measurement can be aided by the use
of amplifiers that would allow the use of smaller hot-fluid amplitudes. With small wall-
temperature amplitudes the coolant temperature will remain practically constant.

The controlling differential equations and boundary conditions are given next, The
one -dimensional transient heat conduction equation

2
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is solved for the temperature distribution in a wall which has convective heat transfer
over its two surfaces (fig. 1). (Symbols are defined in appendix A.) The hot-gas side
fluid temperature is driven sinusoidally and is given in equation form by

Ty = ATge 7 + Ty (2)

where _T—G is given, in the rocket engine application by the usual chemical calculational
techniques and the time dependent term is sensed by the chamber pressure, It is not
necessary to know the numerical value of ATq if the phase lag is used for calculating
the coefficients since the phase determination is independent of the absolute value of the
temperature oscillation, If the amplitude ratio is used for calculating the coefficients
the ATG must be computed from the change in chamber pressure. The boundary condi-
tion at the hot-gas side of the wall surface x/L = 0 equates the heat transferred by con-



vection to that conducted away from the surface into the wall, This is given in equation
form as

hg [TG - (0, Tﬂ - k 9T, 7) (3)

ox

The boundary condition at the coolant surface (x/L = 1) equates the heat conducted to the

surface to the heat transferred convectively to the coolant. In equation form this is given
by

h, [T(L 7) - T:| KaT(L 7) (4)

The solution for the wall temperature as a function of time and location within the
wall consists of the sum of the transient 6(x,7) and steady-state T (x) solutions. The
steady -state solution is found by sefting 9T/37 equal to zero in equatlon (1) and assum-
ing the wall temperature at x/L = 0 and 1 to be given as TGW and Tcw’ respectively.
This yields the usual linear temperature distribution with distance and can be written as

Tg®) = (Toy - Taw) i{‘ + Taw (5)

The transient solution 6(x, 7) is found by assuming the usual product solution: one
a function of time only F-(T), and the other a function of the location within the wall
measured from the heated side of the wall X(x). Equations (1), (3), and (4) are modified
to account for the change in variable from T(x,7) to 6(x,7). The details of the solution
of equation (1) using its pertinent boundary conditions (egqs. (2) to (4)) are shown in
appendix B,

The transient part of the solution 6(x, 7) is given in appendix B in complex form by
equation (B25) presented here in functional form as

o ilwr-
0(x,7) = —2 P (x, L, 0, g, v )exp (@79
A

where



From this equation, the phase lag ¢ (eq. (B26)) and the amplitude of the wall tempera-
ture oscillation (eq. (B27)) are derived. Equations (B28) to (B33) define the parameters
used in equations (B25) to (B27). Equations (B25) to (B27) are rewritten in nondimensional
form as equations (B34), (B36), and (B37), respectively. The governing nondimensional
parameters which appear in the transient solution equation (B34) are Yo and Y o the
convective heat-transfer parameters; nL, the wall properties-thickness-frequency para-
meter; and x/L, the location at which the wall temperature is being considered. The
equations for phase lag (eq. (B36)) and amplitude ratio (eq. (B37)) are given as functions
of the nondimensional parameters. Either one of these equations gives a relation between
the desired coefficients but, since these equations are derived from equation (B34), it
is impossible to solve them simultaneously for the desired coefficients. Instead another
independent relation must be found.

The required relation is derived from the steady-state (or mean) condition that re-
quires the heat transferred convectively to the wall to equal the heat transferred con-
vectively to the coolant. This relation is expressed mathematically as

h. T, -T(0)
R 6
¢ T(L) -T,
From the definition of
h=Bn 1)
v

The ratio of convective heat-transfer coefficients in equation (6) is defined as R. Calcu-
lating the ratio R using equation (7) gives

R=_9 (8)

where R is also given by



T~ - T(0

g ‘T’ ©®
c

(Eqs. (8) and (9) are also eqs. (B50) and (B49), respectively.) Since TG’ Tc, and a
wall temperature have been given which for the present is assumed to be constant allow-
ing T(0) = T(L), R may be calculated from equation (9)., With the value of R known,
equation (8) then gives the second required relation between z,{/G and 1,(/0. Only one
unknown exists in each of equations (B34), (B36), and (B37). Thus, Yg and ¥, can
now be calculated either by knowing the phase lag ¢ and using equation (B36), or by
the amplitude ratio and using equation (B37).

The convective heat-transfer parameters Vg calculated as a function of phase
lag ¢, wall-properties-thickness-frequency parameter 7L, wall temperature location
x/L, and heat-transfer coefficient ratio R, using equation (B36), is plotted in figure 2.

A second plot of the convective heat-transfer parameters sz calculated as a function of
wall temperature amplitude ratio Gm/ATG, wall-properties-thickness-frequency para-
meter nL, wall temperature location x/L, and heat-transfer coefficient ratio R, using
equation (B37), is shown in figure 3. The R = 0 charts are included because they show
the special case of an insulated surface at x/L = 1,0, that is, at h, =0 (ref. 4). In
figure 2 the charts for x/L = 1.0 have curves of  against ¢ which appear to give
negative values for . This is explained by letting hG approach infinity so that :.,DG
also approaches infinity, As this happens, R approaches zero, which forces ¢ to
approach zero proving that positive values of ¢ can existfor Y = 0. Figure 3 shows
that for x/L = 1.0 the curves for i are double valued. The choice of values can be
made using the phase lag angle solution of figure 2 to pick the correct value,

Figures 2 and 3 are included in this report to aid the experimentalist in (1) determin-
ing the frequency and amplitude of the hot-gas temperature oscillation that is required to
give a measurable wall temperature response, and (2) calculating the convective heat-
transfer coefficient, When using the charts to determine wall temperature response, a
calculation should be made to determine whether the coolant temperature will oscillate
significantly, which would violate the fourth assumption used in the derivation of the solu-
tion. An example is given here to show how the heat-transfer coefficients may be calcu-
lated using figure 2,

(1) Assume for the moment that the temperature drop across the wall is small, Then
the measured wall temperature can be taken equal to T(0) and T(L). The mean value of
the hot fluid _’I—‘G, wall T(0), and coolant Tc temperatures are substituted in equation (9)
and the heat-transfer coefficient ratio R is calculated. The value of R and the location
of the measured wall temperature, x/L = 0 or 1,0 for these charts, determines which
chart in figure 2 is used.
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Convective heat-transfer parameter, Y = (Kn/hG)
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(2) The frequency of the temperature oscillation, density, specific heat, thermal con-
ductivity, and wall thickness are used to calculate the value of nL. This determines which
curve is to be used on the selected chart,

(3) The phase lag (in deg) of the wall temperature behind the forced fluid temperature
is determined experimentally from simultaneous oscillograph traces of these tempera-
tures, Entering the selected chart with the phase lag angle on the appropriate nL curve
gives a value for the convective heat-transfer parameter Vg

(4) The convective heat-transfer coefficient on the hot-gas side is calculated by sub-
stituting /5 from step (3), the frequency of the temperature oscillation, and the wall
properties into equation (7).

(5) The convective heat-transfer coefficient on the coolant side is calculated using
either equation (8) or more simply from: h, = RhG,

Obtaining the correct value of R in figures 2 and 3 may present some difficulty,
since only one wall temperature is assumed to be measured and since equation (9) calls
for both T(0) and T(L). This difficulty, however, may be circumvented as explained as
follows,

If the temperature differences in equation (9) are large enough that the temperature
drop across the wall does not significantly affect the ratio R, the required relation
between Y and Y is given by equations (8) and (9) by assuming that T(0) = T(L)

If R is affected significantly in equation (9) by the wall temperatures T(0) and
T(L) not being equal, an iternative process may be used. The initial value for R is
calculated from equation (9) assuming that T(0) equals T(L). Resulting values for hg
and h c will allow a heat flux g to be calculated using the measured wall temperature
(assumed for this illustration to be at x = 0, although any known location in the wall will
also be soluble) and the following equation:

q = hu(T - T(0)) (10)
The temperature drop through the wall is given by

T(0) - T(L) = ‘% (11)

so that

T(L) = T(0) - ‘11-{11 (12)

Use of the new value of —'f(L) in equation (9) gives an improved value for R, which,
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in turn, can be used in the transient solution to obtain improved values of heat-transfer
coefficients, The process is repeated until the heat-transfer coefficients no longer
change significantly. It has been found that between three to six interations will match
the heat convected to the wall to that which is conducted through the wall and convected
from the wall, The agreement is within 1 percent,

Since charts cannot fit exactly the conditions of an experiment without interpolations,
equation (B26) has been rearranged as shown in appendix B (eq. (B51)) to give a more
direct solution for ¥ et This equation involves the convective heat-transfer coefficient
ratio R, along with 7L, x/L and the phase lag angle ¢, and it can be solved using the
classic cubic equation method. The correct choice of root for equation (B51) is the
positive, real root,

Equation (B27) has not been rearranged to give wG or ‘Pc in terms of the ampli-
tude ratio, since the amplitude ratio requires higher frequencies to get measurable am-
plitude ratio changes than the phase lag equation. Also, using the phase lag eliminates
the need for having the absolute value of ATg and thereby permits the use of a trace of
chamber pressure in the case of a rocket engine to replace the oscillating trace of the
hot-fluid temperature. Use of the phase lag equation also eliminates the double value
problem encountered with the amplitude ratio equations. However, this equation has been
programmed and gives hG and hc as functions of amplitude ratio, Both equations
(B51) and (B27) have been programmed (unpublished report by G. Aling and R. Huff) in
FORTRAN IV and are operational on the IBM 7094-2/7044 direct-coupled system. The
titles of the programs are JCL and BL, respectively.

Lumped Wall Properties (Case 2)

The assumptions used in the case 1 solution have been applied to the case 2 solutions
with one exception. Assumption (1) has been eliminated, and in its place it has been
assumed that the temperature gradient through the wall is small or that the wall tempera-
ture is measured at a point in the wall where the thermal properties are considered to
be lumped (appendix C).

The governing differential equation can be written by equating the difference between
the heat transferred to the wall and the heat that leaves the wall to the heat stored in the
wall. In writing the differential equation which describes this condition, it is possible to
account for the thermal conductivity of the wall by using a modified overall heat-transfer
coefficient, The form of the differential equation is the same as that which results when
the thermal resistance of the wall is neglected. Therefore, the differential equation that
neglects the effects of thermal conductivity is used in the initial derivation and then the
solution is modified to account for the thermal conductivity of the wall material. The
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differential equation used in the initial derivation (appendix C) is

pcL 9T _ a(Tg - -h (T -T) | (13)

oT

The hot-gas-side fluid temperature TG is ariven sinusoidally and is given by

Tg = TG + AT sin w7 (14)

The solution to equation (13), using Laplace transform techniques is detailed in
appendix C and is given here in functional form as

_ ho +h,
M(TO, TG’ T0’ ATG, w, p, ¢, L hG, hc)eXp - T T
Tl(T) =\_ oy p J_l_

Starting transient

N(Tg T, hg, hp) y \BI(ATG, w, p, ¢, L, hs, h )sin(wr - qﬂl)/
T + 7W -
Offset from conditions before time zero Steady -state oscillation

—

where
(P1= Qo(p; c, L; w, hG’ hC)

Laplace transforms are used because they yield a solution that gives the wall temperature
history from just before the initial gas temperature fluctuation to the time when the wall
temperature reaches a steady-state (neutral) oscillation. The solution for the wall tem-
perature is given by equation (C9). The phase lag is given by equation (C10).

By assuming that the ratio of the convective heat-transfer coefficients R can be
calculated from equation (9), the equations for the heat-transfer coefficients in terms of
either phase lag angle or amplitude ratio can be derived from equations (C10) and (C11),
respectively. These are

pcLw (15)

h~ =
G (1 + R)tan ?q
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and

-1/2
1 2
h~ = ccL -{1+R
) ATG
The coolant side coefficient from the definition of R is
h c= RhG (17)

The time required for the decay of the initial transient of the wall temperature so that
it is influenced only by the hot-gas temperature oscillations can be determined by using
the first three terms of equation (C9) (starting transient). This calculation serves only
as an approximation as to the time required to reach a steady-state oscillating condition.
The approximation should be good when the thermal diffusivity of the wall material is
high.

To account for the thermal conductivity of the wall material when using the lumped-
wall-property method, equation (13) can be modified by replacing the convective heat-
transfer coefficients with a modified overall coefficient of heat transfer. The details of
this procedure are given in the second section of appendix C. This modification results
in the following equations for the wall temperature amplitude ratio and phase lag angle

From equation (C18) the amplitude ratio is

?_iz cos goz; (18)
4Tq R<1 + i(E &>
1+ LjG——
1+ <1 - X—G> nLR
L/ g
From equation (C23) the phase lag angle is
2L <1 + X_S %)
Qg = tan™! " G (19)
R (1 + _G nL )
1+ - IPG
1+ <1 - fﬁ) nLR
L/ Yg
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Equations (18) and (19) can be rearranged so that the convective heat-transfer para-
meter i can be calculated directly. Equation (18) becomes

X 0
nLR 1 ——g> cos @ __m2
L AT

Yga = (20)
M2 (1 4 R) - cos ?
ATG
and equation (19) becomes
X X X X ]
UGS PV 1] b <1 __G>R CYhulfe, (1-_G)R
4nL 2| 2 L 2 L L/ )
1/2
(1+R) > % *G 2, _R
- tang, -4 =2 {1 - Z)(nL)° R - = tan @y (21)
2nL L L 2

COMPARISON OF DISTRIBUTED (CASE 1) AND LUMPED (CASE 2) SOLUTIONS

Generally, case 2 solution not accounting for conductivity is preferred because of its
mathematical simplicity; however, large errors in the convective heat-transfer coeffi-
cients may be introduced by using the case 2 solution,

The best way to determine whether the case 2 solution can be used in a particular
experiment is to compare the heat-transfer coefficients calculated using both the case 1
and case 2 solutions over the expected range of operating conditions, ¥ the difference is
negligible, the case 2 solution would, for simplicity purposes, be used.

To compare case 1 with case 2, a plot of the revised amplitude ratio (fig. 4(a)) and
phase lag angle (fig. 4(b)) versus the tangent of the case 2 phase lag angle is shown in
figure 4. The case 2 solution provides a base line, for comparison purposes on both
plots, that does not shift with changing 7L, x/L, or R values. The reason for the non-
shifting base line in figure 4(a) is that the revised amplitude ratio is defined as

F R<1+z&>
Ly 6
14— "G/ | m2 (22)
1+ (1-X)1LR[ATG
L) v
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which, from equation (18), is equal to cos Pg- Plotfcing the cos @9 versus the tan ¢,
gives the base line curve shown in figure 4(a), which is not a function of 7L, x/L, or R,
The reason for the nonshifting base line in figure 4(b) is, from inspection of equation (19),
that the base line is merely a plot of the phase lag angle versus the tangent of the phase
lag angle. The amplitude ratio (fig. 4(a)) and the phase lag angle (fig. 4(b)) are presented
in this manner so the reader may relate these solutions to their electromechanical analo-
gies, which are often plotted this way. The base lines are the same as those which re-
sult from analysis of an electrical series resistance-capacitance circuit driven by a
sinusoidal voltage,

In order to compare the amplitude ratio for the case 1 solution with the base line, the
case 1 solution for amplitude ratio é)m/A.TG (eq. (B27)) was multiplied by the bracketed
quantity in equation (22), and this revised (em/ATG)r is plotted on figure 4(a) versus the
tan @y calculated using equation (19). In this way, the case 2 solution accounting for
thermal conductivity can be used when the case 1 plots fall on or near the base line curves
of case 2,

Similarly, the phase lag angles calculated using case 1 (eq. (B26)) may be compared
in figure 4(b) to the base line of case 2. The case 1 phase lag angles are plotted versus
the tan Pg) calculated using equation (19). Again, when the curves fall close to or on the
base line the case 2 solution accounting for the thermal conductivity can be used in place
of case 1.

The set of curves shown in figure 4 are calculated for R= 5.0 and x/L =0 and 1.0.
These conditions only affect case 1 curves, because the base-line curves are not influenced
by these parameters., The general shape of the curves in figure 4 is the same for values
of R between 0.5 and 10, 0. Inspection of figures 4(a) and (b) shows that small values of
nL tend to allow the use of case 2 solutions.

To show the order of magnitude of the errors in convective heat-transfer coefficients
that could result by using the case 2 solution instead of case 1, two examples will be pre-
sented (based on phase lag angle calculations). The example shown as a function of fre-
quency in figure 5 assumes a rocket engine having a stainless-steel wall 0. 012 inch
(0. 3048 mm) thick and a hot-gas-side heat-transfer coefficient of 0. 0022 Btu per square
inch per °r (6.472 kW/(mz)(K)).

For the rocket engine example, an R value of 6.1 is considered representative;
however, a range of R values are presented. For these conditions and an x/L = 1.0
(fig. 5(a)), errors from 30 percent at 6 hertz (nL = 0. 606) to 20 percent at 1. 0 hertz
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Error in using case 2 to calculate con-
vective heat-transfer coefficient,

(a) Wall temperature maasurement location, x/L = 1.0 and 0. 5.

Figure 5. - Percent error in convective heat-transfer coefficients using
Iumped wall properties for rocket engine example. Assumed wall
conditions: density, 0.286 pound mass per cubic inch (7. 92 g/ms);
specific heat, 0.1358 Btu per pound mass per °R (1. 5686x10° J/(kg)(K));
thermal conductivity, 0.287x10 " Btu per inch per second per °R
(21.46 J/(m)(sec)(K)); thickness, 0,012 inch (0. 3048x1073 m); gas-side
heat-transfer coefficient, 0.0022 Btu per square inch per second per °r
(6.472 kW/(m?)(K)); h, = R hg.

(nL = 0. 25) are shown to be possible. At x/L = 0 (fig. 5(b)), errors are reduced to

-22 percent at 6 hertz and -2 percent at 1. 0 hertz,
The percent errors are based on the assumed value of h. The case 1 solution

(eq. (B26)) was used to calculate the phase lag angle; this angle was then used in the
case 2 solution (eq. (15), neglecting the thermal conductivity of the wall) to calculate the

heat-transfer coefficient.
The second example assumes a much lower heat-transfer coefficient on the hot-gas
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Figure 5. - Concluded.

side (by a factor of 10), considered to be representative of a heat exchanger. Figure 6
shows coefficient errors for the heat exchanger example. This example assumes a
stainless-steel wall 0.06 inch (1.524 mm) thick, and a hot-gas-side heat-transfer coeifi-
cient of 0, 00021 Btu per square inch per second per °r (0.61782 kW/(mz)(K)). An R
value of 1. 16 was considered representative of the heat exchanger case; again however,
a range of R values are presented. The coefficient errors were calculated using the
same procedure followed for the rocket engine example. Under these conditions for

x/L = 1.0 (fig. 6(a)), the errors were as large as 62 percent at 0. 2 hertz (nL = 0. 566)
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Figure 6. - Percent error in convective heat-transfer coefficients using
Jumped wall properties for heat exchanger example. - Assumed wall con-
ditions: density, 0.286 pound mass per cubic inch (7.92 g/m 3); specific
heat, 0.120 Btu per pound mass per °R (0. 5024x10°3 J/kg)(K)); thermal
conductivity, O. 2411><103 Btu per inch per second per °R (18.02
J/(m)(sec)(K)); thickness, 0.06 inch (1.524 mm); hot-gas side convec-
tive heat-transfer coefficient, 0.00021 Btu per square inch per second
per °R (0.6178 kW/(m%)(K)); h, = Rhg.
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and as small as 3 percent of 0. 01 hertz (nL = 0.1267). For x/L = 0 (fig. 6(b)), the errors
exceed -100 percent at 0.2 hertz (nL = 0. 0566) but are as small as -3 percent at 0.01 hertz
(nL = 0.1267).

Both examples show that decreasing the frequency (also nL) causes the errors to
decrease. However, in the rocket engine example for x/L = 1.0 the errors remained at
20 percent, showing that low values of frequency or nL will not necessarily give negli-
gible differences between case 1 and case 2 solutions. This is a result of the difference
between the assumptions used in formulating the case 1 and case 2 solutions. At low
values of 9L, R values near 1.0 yield lowest errors,

To compare the two solutions accounting for thermal conductivity of the wall material,
equation (21) was used to calculate the convective heat-transfer parameter with the phase
lag angle obtained from the case 1 solution (eq. (B26)). The results for the rocket engines
example but for an R = 1.0, are shown in figure 5 by the dashed lines. For the rocket
engine conditions, the heat-transfer coefficients obtained from equation (21) (considering
conductivity) instead of equation (15) are not significantly improved.

Differences between the case 1 and case 2 solutions do exist even if the frequency is
allowed to approach zerc. This has been shown in figures 5 and 6 and is expected because
of the differences in the assumptions used to generate the two solutions. Generally,
though it appears that a combination of a low value of nL. and R is required to minimize
the differences between the heat-transfer coefficients calculated using the case 1 and

case 2 solutions involving phase lag angles,

CASE 2 SOLUTION WITH MIDPOINT WALL TEMPERATURE MEASUREMENT

An attraciive possibility for reducing the differences between case 1 and case 2
solutions is to measure the wall temperature at the center of the wall, x/L = 0.5. This
will obtain a phase lag angle which should be nearly equal to the average phase lag angle.
This results because the phase lag angle is approximately proportional to the distance
through the wall that the wave has traveled. Infigure 4(b), it can be seen that the averages
of x/L=1.0 and x/L = 0 for the same nL values are always much closer to the
case 2 base line than either surface alone is. I the wall temperature is measured at the
center, the case 2 solution, in terms of phase lag angle, can possibly be used to calculate
the coefficients.

The curves given in figure 5(a) for x/L = 0.5 show that under certain conditions the
errors caused by using the case 2 solution to calculate the coefficients tend to be reduced.
This is true when the comparison is made between the x/L = 1.0 and 0.5 case. How-
ever, a comparison of figure 5(b), x/L = 0, R= 10 to the x/L = 0,5 curves of figure 5(a)
shows that the errors in coefficient are not reduced. Therefore, it can only be stated that,

D4



when the wall temperature is measured at the midpoint, the errors due to using the case 2
solution to calculate the coefficients tend to be reduced,

OPTIMUM PHASE LAG ANGLE

For the insulated wall case reference 1, an optimum range of phase lag angles exists.
The percent error in the coefficient due to an error in measuring the phase lag angle is
minimized in this range. The same results are obtained when using the case 2 solution
given in this report. The equation for an incremental change in convective heat-transfer
coefficient is obtained from equation (15) and is

oh _ 2 (23)

1
hog sin 2¢

As shown in reference 2, the minimum value exists at ¢ = 45° (0.785 rad). Further-
more, ¢ can range from 20° to 80° (0. 349 to 1. 396 rad) before the errors in h begin to
increase greatly. Hence, in using the simpler case 2 solution, a guide line is established
which shows that 2 minimum phase lag angle of 200(0.349 rad) and a maximum of 80°
(1.396 rad) are desirable (to minimize errors in h due to inaccuracies in measuring the
phase lag angle). However, it appears from inspection of figure 2 that the case 1 solution
imposes an upper limit on the phase lag which is dependent on both x/L and R. The upper
limit is best determined by inspection of figure 2 by examining the slope of the { versus
@ curves. When the Ay/A¢@ becomes large enough so that the error in the measurement
@ gives an unacceptable error in ¢ a lower frequency must be used. This will give
smaller phase lags and better accuracy.

In figures 5 and 6 the frequencies at which a phase lag angle of 20° is reached are
indicated by arrows shown on each of the curves. These indicate the start of the optimum
frequency range. Higher frequencies will increase the phase lag angle, As can be seen,
these frequencies are low enough (below 3 Hz) so that they should be easily obtainable with
current control systems.

SOLUTION OF PROBLEM WHEN COOLANT TEMPERATURE
IS DRIVEN SINUSOIDALLY

The preceding solutions have been derived for the case in which the hot-gas tempera-~
ture is driven sinusoidally. The extension of this technique to the case in which the
coolant temperature is driven requires the following substitutions to be made:
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h. =-h'
G (,: case 1
he = -hg
h. =h'
G ? case 2
hc=hG
h' T0O) -T
= =_c: ¢
RERe= T .. - T(L)
G G

For the case 1 and case 2 solutions these substitutions change the stated location of the

coolant-wall surface to x = 0 and that of the hot-gas wall surface to x=L (i.e., x =0
at the surface on which the fluid temperature is oscillated). Making these substitutions
allows the charts in figures 2 and 3 to be used to calculate the heat-transfer coefficients
when the coolant temperature is varied sinusoidally instead of the hot-gas temperature,

When making these substitutions in figures 2 and 3 the negative sign of the coefficient is
discarded and only the absolute value of the convective heat-transfer parameter Y is

used,

SUMMARY OF RESULTS

An analytical investigation has been performed in which the temperature response of
a convectively heated and cooled plate to a sinusoidally varying driving temperature is
determined. The temperature response of the wall can be used to determine both con-
vective heat-transfer coefficients. Two independent methods for calculating the coeffi-
cients are presented. One uses the phase angle of the measured wall temperature lag
behind the driven (hot gas or coolant) temperature. The other method uses the ratio of
the amplitude of the wall temperature to the amplitude of the driven temperature.

Each of these methods requires two independent relations between the coefficients
in order to solve for the coefficients., The {first relation is knowledge of the sinusoidal
variation of the driven fluid and wall temperatures with time, so that the phase lag angle
between these quantities (or amplitude ratio) can be determined. The second requires the
time averaged values of the driven, wall, and coolant temperatures. These are used to
calculate the convective heat-transfer coefficient ratio., These two relations provide the
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information needed to calculate the coefficients.

Two solutions for the wall temperature response are presented. The first, case 1,
uses distributed wall properties and accounts for low thermal diffusivities and thick walls,
In this case, the location of the measured wall temperature is important and the solutions
for the convective heat-transfer coefficients in terms of phase lag angle or amplitude
ratio are lengthy. Charts giving the solutions for the coefficients over a selected range
of parameters are included. The other solution, case 2, assumes the wall has a lumped
capacitance and thermal conductivity. In this case, the solutions for the convective heat-
transfer coefficients using either phase lag angle or amplitude ratio are simple. The
solutions are analyzed by comparing the convective heat-transfer coefficients calculated
using the distributed solution to those calculated using the lumped solution.

Measuring the wall temperature at the midpoint in the wall tends to minimize the
errors in heat-transfer coefficients when the lumped wall property solution is used to
calculate them.

An optimum range of phase lag angles exists within which minimum errors in con-
vective heat-transfer coefficients result from errors in measurement of phase lag angles.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 5, 1969,
122-29.
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APPENDIX A

SYMBOLS

specific heat of wall material,
Btu/(1bm)(°R); J/(kg)(K)

natural logarithm base,
2.71828

part of product solution for
6(x, 7) which is independent
of x

frequency of temperature os-
cillation; Hz

time averaged convective
heat-transfer coefficient in-
dependent of the impressed
sinusoidal temperature vari-
ation, Btu/(in.?)(sec)(°R);
w/(m%)(K)

imaginary number, V-1

thermal conductivity of wall
material, Btu/(in.)(sec)(°R);
J/(m)(sec)(K)

thickness of wall material,
in,; m

Laplace transform of tem-
perature

functional notation

heat flux per unit area,
Btu/(in.2)(sec); W/(m?)

ratio of convective heat-
transfer coefficients, hc/hG

Laplace transform variable

T

AT

T(L, 7)

T(0, 7)

T(x, 7)

T (%)

u(T)

X(x)

X

temperature (temperature of
wall when not subscripted),
°R; K

half amplitude of temperature
oscillation, 0R; K

average or mean value of tem-
perature, oR; K

wall temperature, function of
time at x= L, °R; K

wall temperature, function of
time at x= 0, °R; K

wall temperature, function of
distance (measured into
wall from hot surface) and
time, °R; K

steady -state part of T(x, 7),
°R; K

modified overall heat-transfer
coefficient which accounts
for the thermal conductivity
of the wall material,
Btu/(in.z)(sec)(OR);
w/(m?)(K)

unit step function

part of the product solution
for 6(x,7) which is inde-
pendent of time, OR; K

distance measured from the
heated surface of the wall
into wall toward cooled
surface, in.; m



Subscripts:
c

cw

G

GW

thermal diffusivity, K/pc,

in.2/sec; mz/sec

frequency and wall property

parameter, Yw/2a, 1/in.;
1/m

transient part of appropriate
wall temperature solution,
OR; K

density of wall material,
]bm/in.3; g/m3

time, sec

phase lag angle between the
driving gas temperature
and the responding wall
temperature, deg; rad

convective heat-transfer
parameter Kn/h, dimen-
sionless

angular velocity of tempera-
ture oscillation, 27f rad/sec

coolant
coolant side of wall, x=L
hot gas or fluid

hot-gas side of wall, x=0

case 2

t

maximum value

revised Gm/-ATG by using
first-order solution to cor-
rect the value to range
from 0to 1,0,

refers to values calculated
using the appropriate
case 2 solutions

refers to conditions before
the start of the tempera-
ture oscillation

case 2 first-order differen-
tial equation solution not
accounting for the thermal
conductivity and using
lumped system

case 2 first-order differen-
tial equation solution
accounting for the thermal
conductivity using modified
overall heat-transfer
coefficient

Superscript:

solutions in which the coolant
temperature is driven
sinusoidally. In appendix B
the prime indicates a deri-
vative
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APPENDIX B

DERIVATION OF THE CASE 1 SOLUTIONS - DISTRIBUTED WALL PROPERTIES

Figure 1(a) shows a wall through which heat is being transferred from one fluid to
another. The heat is transferred across the fluid-wall boundaries convectively, It is
required that the convective heat-transfer coefficients at the plate surfaces be deter-
mined experimentally by measuring the two fluid temperatures and only one wall temper -
ature. This can be accomplished with the given information by oscillating one of the fluid
temperatures sinusoidally and measuring either the phase lag angle between the fluid and
wall temperature or the amplitudes of the fluid and wall temperature. A sketch showing
what the wall temperature might look like is given in figure 1(b). The solutions for the
coefficients are found by first finding the equation for the wall temperature response to
the sinusoidally driven fluid temperature and then solving this equation in terms of the
known quantities for the coefficients.

General Solution

The response of a convectively heated and cooled wall to a sinusoidally varying hot-
gas temperature is derived here. The solution accounts for the thermal properties of
the wall material being distributed throughout the wall, The following assumptions are
used in the derivation:

(1) The heat flows through the plate in the x-direction only (one-dimensional heat
conduction).

(2) The wall or plate properties (density, specific heat, and thermal conductivity)
are constant.

(3) The convective heat-transfer coefficients on both sides of the wall are constant.

(4) The coolant temperature is constant,

The second-order partial differential equation for transient, one-dimensional, heat
conduction in a plate is solved. The boundary conditions are that the plate is convectively
heated on one side by a fluid having a sinusoidally varying temperature and cooled on
the other side by a fluid which is not significantly affected by the oscillating heat flux
from the wall. The solution follows.

The differential equation is

82T

8x2

D

— (B1)
T

Q |
@
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where o« = K/pc, the thermal diffusivity.

The boundary conditions are

hg [TG - T(0, T)] - x 9T(0,7) at x =0 (B2)
ox
h, [T(L,T) - Tc] - x 9T, 7) at x= L (B3)
ox
The driving temperature is
Tg = ATg e 7“7+ Ty (B4)

Assume the solution has the form of a transient plus a steady-state value then
0(x, 1) = T(x, 1) - TS(X) (B5)

where Tg is the steady-state temperature distribution prior to driving TG(T) and T(x,7)
is the temperature response of the wall to the harmonically driven hot-gas temperature.
The solution for g(x, 7) follows,

Using boundary condition equation (B2) and substituting for Tq the driving gas tempera-
ture, equation (B4), yields, after subtracting the steady-state heat transfer

AT e 19T _ g0, 1) = - K 260, 7) (B6)
hCT 0xX

Boundary condition equation (B3) can be rewritten as

o(L, 1) = - K 36(L, ) (B7)
h 0xX
c
The differential equation becomes
2
3°6(x, ) _ 1 96(x,7) (BS)
2 a ot

ox

Assume a product solution then
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0 = X(x) - F(7) (B9)
%9 - F(nx'(x)

ox

%8 - X(x)F'(7)

oT

2
28 Fnxr(x)

2
00X

Substituting this into differential equation (B8) gives

F(r)X'"(x) = L X(x)F(7)
o

X (X)
X(x)

1 F'(7)
s (B10)

7)
Since either side of equation (B9) is independent of the variable appearing on the other

side, it is concluded that either side must be equal to a constant. This constant is
assumed to be )\2 and from equation (B9) the following equations have been written:

X = %X (B11)

F' = 2%aF (B12)

Three choices for A% are possible; 22 <0, A2 - 0, 22 > 0. I 22 > 0, the solution will

not be periodic in Xx; therefore, A2 > 0 is rejected. K Az = 0, the solution will not be
periodic; therefore 2= 0 is rejected. If 7\2 < 0, a solution exist and is found as
follows:

From equation (B11)

X"+)\2X=O

The characteristic is
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From which

From Wiley (ref, 5, p. 88)

-iax
1€ +Cgy €

From the derivation for F given below in which the equation for A
lowing equations for A are derived:

is deduced, the fol-

22z iw
o
A = 1w
o

Then

X:cle

(B13)
From equation (B12)
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i 22 is real, F cannot be periodic since

2
e 2T _ ¢osh 20 - sinh A%ar

But if Az is imaginary, then

—ikzaT _

e cos 7\2017 -1 sin Aza'r

which is periodic as required. If 7\2 = iw/a, where w is the angular velocity. The
Azar terms in this equation reduce to the usual wr form. Hence

F=ce ¥ (B14)

Substituting equations (B13) and (B14) into (B9) gives

-iwT ¢ ot \/(w/Za)x-F\[(w/za)x sy e?i\/(w/Za)Xi\/(w/Za)x (B15)

The choice of signs in the exponent is arbitrary. Combining the constants (cc1 = A and
cey = B) and rewriting this equation gives

6= Ae X gMor-mx) 5 1x -i(wrinx)

(B16)
where 5 = Vw/2a,
Application of the boundary conditions requires the 96/0x. This is given by
30 - p o WTMR) (o iy B T (g (B17)
0X
30 - A - 1)e EURTTR) | g (g _ gy -i@Tx) (B18)
0x
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Now equation (B6) gives

ATG e-in _ 6(0, T) - £ 89(0, 'T)
hG 0x
AT e 19T _ A 19T _p 9T KN (4 )i - 1)eT
el
ATG-A-BJE(B - A)i - 1)
hg
AT =B X0 G -1 +1] -A%2G-1) -1 (B19)
hG hG .

Applying the boundary condition equation (B7) at x = L gives

oL, ) = - K 20, 7)

c 0x

Ae-L e-i(wT—nL) 7L e—i(w7+71L) _ _Kn Al - 1)e—nL -i(wr-nL) _Kn B(1 - i)enL—i(w‘HnL)

+Be
c c

A[l +En i - 1ﬂ e"’lL‘i(wT-nL) - -B [1 + X1 a- i):| e’r]L—i(wT+77L)
h

¢ c

- [:1 + X1 1- i):|
he | 2nL-iznL (B20)

1+§71(i—1)-|
hC

w >

Using this expression and substituting in equation (B19), which was obtained from bound-
ary condition equation (B6), the equations for the constants A and B have been ob-
tained as follows:
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h :
AT = B[I_{ZZ (i-1)+ 1:l. +BL_¢ [Kﬂ G-1) - {lezﬁL-l‘?nL

Kng-n+1]]1+82¢6 -1+ 1+Iﬂ(17—i) Iﬁ(i-l)-i (2nL-i2nL (B22)
hG hc hc hG

Working with the common denominator in the equations for the constants A and B (egs.
(B21) and (B22)) and defining y = Kn/h results in

E'UG(i -1) + El ’:Wc(i - 1)+ 1:' + [-tl/c(i -1) + 1:“:¢/G(i - 1) - i]ean‘ian

[(1 -Yg) + in:| |:(1 -Y)+ itl/c] + [(1 +¥) - iz.,l/c:l [_ (1+yg) + in]eanqan

A=

1Y - W+ Ugte - Wghe + WG ~Va¥e + Ve - Va¥o)
1w - g - Ugbe + WgWe 1, + WG, g + Ygb )| PR
1- (g + W) +ilyg + ¥ - 29g¥.)
+ e2nb [-(1 Yt Wg) G Y+ 2¢G¢C):| (cos 27L - i sin 27L)
1= (g + ¥ + e [-(1 b+ WGCos 2L + (W + W, + WP )sin 2nL]

+ iBa,l/G +¥, - Zszwc) + (sz + Y+ 2z,ngbc)cos 2nL, ez77L +(1+ Ve + z,DG)sin 2nL eZnL]
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For simplicity this expression is rewritten as a + ib. Then

] —ATGI:(I W) - itpc:lean—an

a+ib

-ATG[(I +¥,) - izpc](cos 2nL - i sin 277L)e2"L

a + ib

_ATG 2Nk {[(1 + Y )cos 2nL ;xpc sin ZnL:] - i[xpc cos 277L + (1 +y )sin 2nL:|} (a - ib)
2

a2+b

Rewriting the preceeding equation in simpler form using constants ¢ and d as defined
by equations (B30) and (B31), respectively, gives

-ATg e®M(c - id)(a - ib) -ATg e*Mca - db - i(da + cb)]
A= - (B23)
a2 + b2 32 + b2

) ATG[(1 - 9) + ip ] i ATg(e + if)(a - ib) _ AT [ea + b + i(fa - eb)]

(@ + ib) a2 4 p2 a2 4 b2

B (B24)

where e and f are defined in equations (B32) and (B33). The solution for 6§, making
use of equations (B23) and (B24), is as follows:

eZnL -NX

-ATg [ca - db - i(da + ch)] ' + ATG e™ [ea} b + i(fa - eb)] e "IN

EL2+b2

-iwT
e

-ATg oN(2L-x) [ca - db -i(da + cb):l(cos 7% + 1 sin nx) + ATq enx[ea +fb + i(fa - ep)](cos NX - i sin nx) o7

3.2+b2

9=
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+AT
6= __Gz (-e"(ZL'X)[(ca - db)cos nx + (da + cb)sin nx] + eT’x[(ea + fb)cos nx + (fa - eb)sin nx]
2
a“+b

1 {[—(ca ~ db)sin 5x + (da + cb)cos nx] NMRL-x) + [(fa - eb)cos nx - (ea + fb)sin nx]enx}) e T

The phase lag between the wall and the driving hot gas is defined as ¢ and is

1 [—(ca - db)sin nx + (da + cb)cos nx] en(ZL"X) + [(fa ~ eb)cos 7x - (ea + fb)sin nx]enx
T n(zi -xj

[(ea + fb)cos nx + (fa - eb)sin nx] e™ - [(ca - db)cos 7x + (da + cb)sin nx]e

The amplitude ratio is

8 2
L 1 ({[—(ca - db)sinnx +(da+ cb)cos nxJen(ZL_x) + [(fa - eb)cos 7x - (ea +1b)sin nx]enx}
ATg  a24p

2
+ {[(ea + fb)cos nx + (fa - eb)sin nx}enx - |:(ca - db)cos nx + (da + cb)sin nx] en(ZL-x)} >

where

(B25)

(B26)

(B27)

a=1- (z,l/G + zpc) + eZnL [(gl/G + Y+ 21,'/G11/c)sin 2nL - (1 + v+ wG)cos 2nL] (B28)

b= (g + ¥, - W) + ez’TL[(wG + W+ 2UGW )eos 2L+ (1+ Y, + Y)sin 27L] (B29)

c=(1+ 1PC)COS 2nL - ¢, sin 2L

d=1, cos 2nL + (1 + ¥ )sin 2nL

The important equations written in nondimensional form are as follows:
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General solution for wall temperature

g_._1 <[(ea+ fb)cosnL X + (fa - eb)sinnL _’S] oML(x/L)
ATG a2+ b L L
- [(ca -db)cos L = + (da + cb)sinnL .}E]enL(z‘X/L)
L L
+i{|~(ca - db)sinnL X + (da + cb)cosnL .§:| enL[2—(x/L)]
L L
+ I:(fa -eb)cos L = - (ea + fb)sin7L 5} enL(X/L)}>e—iw'r (B34)
L L
or
2 O m -(wT-¢)
© v (B35)
AT, AT
where
e tan- [—(ca - db)sin gL f+(da + ch)cos L f]e"L[z -(x/L)], [(fa_ - eb)cos 7L L’E - (ea + fb)sinnL ﬂenL(x/L) (836)

[(ea + fb)cos L % 1 (fa - eb)sinqL E]e"’l"(x/l‘) —[(ca - db)cosnL = +(da + cb)singL E]eT’L[Z'(X/L)]
L L L L

m . 1 <{-[(ca—db)sin nL £ -(da+ cb)cos L E]enL[-?"(X/L)]
L L

2
+ [(fa - eb)cosnL £ - (ea + fb)sinyL §:|e77L(X/L)}
L L
+ {[(ea + fb)cos 7L £ 4 (fa - eb)sin nL E}enL(x/L)
L L

o\ 1/2
- [(ca - db)cos 7L —‘E—+ (da + cb)sin L f] (2 _(X/L)]} > (B37)
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Derivation of Convective Heat-Transfer Parameters as Function of

Forcing Frequency, Wall Material Properties, and Phase Lag

The equation which gives the convective heat-transfer parameters, sz and . in
terms of the forcing frequency of the hot-gas temperature, wall material properties
(including thermal conductivity), and phase lag angle is derived in this section.

Equation (B26) is rewritten as

tan ¢ (ea + fb)cos nx e™ 4 tan p(fa - eb)sin nx e™ - tan ¢(ca - db)cos nx en(ZL"X)

- tan ¢(da + cb)sin nx eN(2Lx) | (ea + fb)sin nx €™ - (fa - eb)cos nx e™

+ (ca - db)sin nx en(2L-—x) - (da + cb)cos nx en(ZL—X) -0

(ea + fb)(tan ¢ cos 7x + sin 77x)977X + (fa - eb)(tan ¢ sin nx - cos 11x)e77X

- (ca - db)(tan ¢ cos nx - sin nx)en(ZL'x) - (da + cb)(tan ¢ sin nx + cos nx)en(zL"x) =0

(ea + tb)(sin ¢ cos 7x + cos ¢ sin gx)e™ + (fa - eb)(sin ¢ sin nX - cos ¢ cos nx)e’™

- (ca - db)(sin ¢ cos 7x - cos ¢ sin nx)en(zL-x)

- (da + cb)(sin ¢ sin nx + cos ¢ cos nx)en(ZL‘X) =0

(ea + fb)sin(@ + nx) - (fa - eb)cos{y + nx) - ezn(L'X) [ ca - db)sin(¢ - nx)

+ (da + cb)cos(e - nx)] = 0 (B38)

Using equation (B38), factoring out the terms having P, and PG in them, and de-
fining the coefficients as

2n(2L-x)

A = -sin(¢ + 7x) + e2nk cos(p + nx - 2nL) + e sin(ep - nx)

_eZn(L—x) cos(¢ - nx + 2qL) (B39)
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eZ'r](ZL -X)

B = cos(¢ + 1x) - e sin(¢ + nx - 25L) - cos(p - nx)

+ e2n(L-x) sin(¢ ~ nx + 2nL) (B40)
C =sin(¢ + %) + 2l sin(¢ + nx - 29L) + e2n(2Li-x) sin(¢ - nx)

+ M) Gino ax v 2qL)  (B41)
D = -cos(¢ + nx) + e2nb cos(yp + nx - 29L) - e2n(2L-x) cos(p - nx)

+ e2mLx) cos(ep - 7x + 2nL) (B42)
E = sin(¢ + nx) - 2L sin(p + nx - 27L) + e2n(2L-x) sin(¢ - 7x)

- 2n(L-x) sin(¢ - 7x + 29L) (B43)
F =cos(p + nx) + e2nh sin(¢ + nx ~ 2pL) - ezn(ZL‘X) cos(¢ - 1x)

- 2MLX) Gin(g - x4 2nL) (B44)
G = -sin(¢ + nx) - e2nh cos(p + nx - 2nL) + 2n(2L-x) sin(p - 1x)

+ e2n(L—x) cos(¢ - nx + 2nL) (B45)

the desired equation is
AF + GYYgWa + 2002 + 2C + Dipg, + 20, + (A+ By +E = 0 (B46)

If l,le is a known quantity, the equation reduces to a quadratic which is easily solved.

I y c is known, the equation is linear and again can be solved easily. However, if
neither Vg Or Y, are known, a relation must be established between them to solve the
equation. This relation exists in the steady-state solution for heat transfer across a
plate,

hg [TG - TW(O)] - hc[Tw(L) - TC] (B4T)
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Rearranging equation (B47) gives

h, Tg - T(0
h—c-=_G © (B48)

¢ T -T,

Defining the ratio in equation (B48) as R results in

h, Tg - T(0)

R = _2 = —_— (B49)
hg T(@) - T,
since ¢ = Kn/h
v
rR-.G (B50)
Ve
Substituting equation (B50) into equation (B46) gives
[c+rC+D)] ;, 24+R@A+B) .
+ — + 0 (B51)

¢ R(F + G) Vet 2R(F + G) ¢ 2R(F+G)=

The solution of this cubic equation can be obtained using the classical approach. The
positive, nonzero, root will yield the desired convective heat-transfer parameter o

From equation (B50), then

Vg = Ry, (B52)
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APPENDIX C

DERIVATION OF THE CASE 2 SOLUTIONS - LUMPED WALL PROPERTIES

The basic problem is the same as has been stated in appendix B. However, appen-
dix B gives the solution for the wall temperature obtained using the distributed wall
property differential equation. In this derivation it is assumed either that the wall pro-
perties (density and specific heat) can be lumped and that the temperature gradient across
the wall is negligible or that the temperature gradient across the wall (effect of finite
thermal conductivity) can be accounted for by using a modified overall heat-transfer coef -
ficient and lumping the wall properties at the point where the wall temperature is meas-
ured,

The solution for the temperature response of the wall to a sinusoidally varying fluid
temperature is derived in the first section of this appendix assuming no wall temperature
gradient to exist. This solution includes the exponential decaying terms (starting
transient), an offset of the average temperatures due to a change of the average fluid tem-
peratures, and the steady-state sinusoidal oscillations. The starting transient is of in-
terest in determining the time required to reach steady-state oscillating conditions,

The steady-state oscillation portion of the solution has been rearranged to give the
heat-transfer coefficients as functions of, among other things, either the steady-state
phase lag angle or the amplitude ratio. These equations are presented in the text.

The second section of this appendix presents the solution for the steady-state oscil-
lating wall temperature arrived at in the first section but modified to account for the
thermal conductivity, This is accomplished by defining an overall heat-transfer coeffi-
cient to exist between the appropriate fluid and the point in the wall where the wall tem-
perature is measured, The density and the specific heat are assumed to be concentrated
at the point in the wall where the temperature is measured. The resulting solution for
the wall temperature is then rearranged to give the convective heat-transfer parameter
in terms of, among other parameters, either the phase lag angle or the amplitude ratio.

Response of a Convectively Heated and Cooled Wall to a Sinusoidally
Varying Hot-Gas Temperature Neglecting the
Effect of Thermal Conductivity
The hot-gas temperature varies sinusoidally and can be written as

To=Tq + AT, sin w7 (Cc1)

G G G
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The heat balance across the wall is formulated as

peL 9T - hg(Tg - T) - h (T - T,) (c2)

dr
Substituting equation (C1) for Tg in equation (C2) and dividing through by pcl. gives

h
ar _ g =
—=—(Tg

dr pcL

h
+ AT sian-T)——c—(T-Tc) (C3)

G pcL
The solution of this first-order differential equation has been accomplished using Laplace
transform techniques. Hence the solution yields information about the time required for
the wall to reach a steady-state oscillating condition after the start of the hot-gas tem-
perature oscillation,

Making the Laplace transformation in equation (C3) yields

h.T. h.AT h h h T
— G G+ G G w G_?[T]' Cg[T]_*_ C ; (C4)

pcLS pcL S2+w2 pcL pcL pcL

S¥[T] - T0

Solving for ¢[T] in equation (C4) gives

h.T +thc h AT ~w

TO + G G + G . G
pcLS 2
Z[T]= — hPCL(S + ) (C5)
S+ G ¢
pcL

Rearranging equation (C5) by dividing both the numerator and denominator by pcL gives

T —G FI‘_G+ £ TC G ATGw
#[T]= 0 pcLs pcL cL (C6)
hg b hg b ¢ B\ 2
S+ —+-C1] §fs+ =L+ S+ —TL 4+ —]J(S" +w)
pcL.  pcL pcL  pcL pcL  pcL

The last two terms in equation (C6) have been rewritten using partial fractions so that
the inverse transforms can be found. The resulting rewritten form of equation (C6) is
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T h.T~+h T hGATG

ol s s )
+ + + pcL
Sy G ¢ G ¢ S+ G ¢

pcL pck

% < . .
2 b, +h h.+h

hathe)", 2| 5, atte (G C—io>21(8+iw) (G c+iu>21(S—iw)
L pcL peckL pek pel

w o 1 + 1 > (c7

J

The inverse Laplace transform of equation (C7) yields the wall temperature

T, e-[(hG+hc)/(ch)]T N hG?G R T IE‘(T) ) e—[(hG+hC)/ch)]7:|

el hc
h AT —[(hG+hc)/(ch)]7 e—iwr eiw‘r

L8 G e e - - + — (C8)
h~ +h

pcL N 2 h~ +h »
lLlG+hc 2 G c_juloi G S tiw)2i
tw pcL pckL

pcLi

L.

The last two terms in the bracketed quantity in equation (C8) have been combined by re-
writing the numerators in complex polar form and converting the resulting polar form to

the equivalent trigonometric form as follows.
Define an angle ¢ as shown in the following sketch:

h. +h \2 9 1/2 /
G c w
[<_';3CL ) ' ]

iw

h

G + hc
"~ pCL
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The last two terms of equation (C8) are then written as

~iwT

-iwT

hGATG
pcL

pcl

-iw)2i
pcLs

h~+h
€ riw|2i
pcL

2
h.+h
<G c) +(-‘)2
pcL

[—e -i(wT-¢) . ei(w'r—go):,

2i

hGATG

pcl sin(wt-¢)

2
h~+h
G c +w2

pcls

Substituting this result into equation (C8) and collecting terms gives the equation for the
wall temperature response to a sinusoidally driven hot-gas temperature with the initial
wall temperature being TO' The response, assuming the wall material has a large

thermal conductivity, is
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h

G

Starting transient

Offset from con-
ditionsat 7=0

AL A
~ N0 N
TG * thc + hGATG w >e{(hG+hc)/(pCL)]T+ hGTG + thc u(r)
h~+h pcL 2 h~ +h
G ¢ hCT + hc 9 G c
—_—] +w
pcLy
o,
Steady -state oscillation
r A B
hGATG
pcL .
+ — - sin(wt-¢) (C9)

2
hG+hC 2
— ] +w
pcL



where

p, =tan"l_pclw (C10)
hG + hc

w(7) =0 for 7<0

u(7) =1 for 7> 0

and the amplitude ratio at steady-state oscillation is given by

hg

ml _ pcL (C11)
AT
G 2
h~ +h
G c) . w2
pcL

Thermal Conductivity Accounted for in Lumped Solution

0

It is possible to account for the thermal conductivity in the lumped solution (eq. (C9))
by assuming that the convective heat-transfer coefficient h can be replaced by a modi-
fied overall coefficient:

hGK
UG = —_— (C12)
K + XGhG
th
U (C13)

TT——
K+Xchc

where Xg is the distance into the wall from the hot-gas side and x c is the distance in-
to the wall from the coolant side. Then

X, =L -x4 (C14)

The last term in equation (C9), the steady-state oscillation portion of the solution, has
been rewritten as follows:

1



hGAT G

h~+h
1= G~ ¢ sin(wr - <p1)

pcLw 2
hGr + hC

1+

Using equation (C10) this expression becomes

6
1 1 1 sin(wT - gol)
ATG hc 9
1+— ¥1+tan ®q
e
99 1 .
= cos ¢4 sin(w7 - gol) (C15)
ATG hc
1+ —
hg

Substituting the modified overall coefficient U (egs. (C12) and (C13)) for hy and h,

respectively, in equation (C15) yields

92 cos ¢,
= e sinfwT - (pz)
AT, . hc(K + XGhG)_,
r ;
he [K + (L - xG)hc:]
9 cos @
2 . 72 . sin(wT - 902)
A % %G
. LhG L
+ ;X
S P _G_>
LhC ( L

where subscript 2 indicates that the modified overall coefficient has been used.
This equation has been rewritten to include ¢ as follows: Since

J’i: hﬁL (C16)
)
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and

W
Vo= (c17)
R
6 cos .
2 . 2 sin(wT - @) (C18)
ATG Xs L
R(1+
Ly

X
1+<1-_G>M
L/ yg

This equation gives the wall temperature amplitude ratio derived from the first-order
differential equation and accounts for the thermal conductivity of the wall material by
using a lumped system., A lumped system in this case means that the wall is divided into
parts and that the conductance of each part is added to that coefficient which applies to
the boundary shared by the appropriate coefficient and the assigned portion of the wall.

The phase lag (eq. (C10)) has also been reworked to account for the thermal conduc-
tivity using the lumped system approach.

Substituting equations (C12) and {C13) for hs and h,, respectively, in equation (C10)
and using the subscript 2 to indicate the resulting phase lag angle yields

g02=tan_1 . pcLw (C19)
h K h K

*_—.__'. -
K+xghy K+ (L —XG)hc

Multiplying both the numerator and the denominator by 2 and rearranging this equa-

tion gives

¢2___tan—1 , 2 . S (C20)
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Using equations (C16) and (C17) and since

YL = pclw (C21)
2h
equation (C20) has been rewritten as follows:
P9 = tan™! 2 (C22)
1 R
+ -
X X
o <1+_Gz& o[ 1+ (1-78)
L Yq L) Yg
X
2L (1 + _GnL
-1 L #/G
@y = tan (C23)
X

Equation (C23) gives the phase lag angle derived from the first-order differential equa-
tion and accounts for the thermal conductivity of the wall material by using a lumped
system. Reworking equation (C23) yields

X X X X
tan<p21+<1——G>M+R(1+-£‘G—r%> =2anG<1+TG;b-L— 1+ 1—£’7L_R
L/ Yg G G L) Yg

XG Xq Xq Xq
tan @, | ¥ + 1-—£'—nLR+R’J/G+—L—nLR = 2nL{ys + nL||¥g + I-TnLR

[ x x x
2Lyl +|2 _S.an + 2<1 - -IG>7E2R— tan @o(1+R)|Yg+ TG (1 - —-I(Ji>nL3R-nLRtang02=O

2 e e (1+R) *G [, *e\=2, R
+<{pL[—+ {1 - =)R| -tan ¢ Y +——1——nLR-—tang0=O(CZ4)
LRy < L> 2 gL [ G L L 2 2
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This equation relates the convective heat-transfer parameter z,L/G to 9L, R, x/L
and ¢. Since Vg = RY,,, equation (C24) can be rewritten in terms of Y, as

X X X X~\>72 tan g
1//3+ nL—G+ - Slr -ta.ngoz(l'FR)_E.F_q 1—_G£______2=0 (C25)
L L L/ R 2R

From equation (C24)

X X ~ tan ¢,(1 + R) X X
,’[/Gz-y_&_(_}+ —_G.R + 2 i._l; nL._G_+ 1-__9..R
2| L L

2 - 2L 2 L L
1/2
tan g02(1+ R) 2 Xq Xq 9 R
-t -4/ 2 1- )L R - Stan g, (C26)
2nL L L 2
if xG/L =0
(1+R) tan @o(1 + R) ]2 2
tan g (1 + R an ¢ +
v = - ILR 2 s Lper o T2 T + 2R tan ¢,
G 2 anL 2 29L
if XG/L =1
9 1/2
L tang,(1+R) 4 tan <p2(1 +R) 1
sz _hk 3 +2dmL - . + 2R tan )
2 4nL 2 2nL

The amplitude ratio taken from equation (C18) has been rearranged to give “UG as
follows:

2 e <1——LGl>nLR+Rz//G+?nLR - sz+(-—L_>nLR cos @y = 0
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e 2} X X X
"l/G m2 (1+R)—cos¢2 + m2 1__G nLR+—g~"7LR - 1-_(}_ nLRcosq)z:O
ATG L L L

0 X X X
nLR——ml 1-—G— +__§+ 1-G cos @
AT, L) L L 2

l»DG:

8
Lz(1+R) ~ COS @,
ATG

X 0
LR (1-_(}_) cos¢2-_ml

L AT
Y= ——m (Cc27)

8
M2 (1 L R) - cos ¢y
ATG

This equation gives the convective heat-transfer coefficient gbG calculated using a
Inmped wall property system.,
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